
Learning Agile Robotic Behaviors via Zero-Shot Reinforcement Learning

Motivation

Figure 1: Potential behavior obtained in a
zero-shot manner

Reinforcement learning (RL) provides a framework to obtain
optimal or near-optimal policies from sub-optimal data given
a reward function. In recent years, the use of RL to control
quadruped robots has achieved significant success, enabling ro-
bust locomotion across highly diverse terrains [1, 2, 3] and the
acquisition of diverse behaviors [4, 5]. However, it is infeasible
to enumerate all possible reward functions which may be of in-
terest to solve in the future, and hence most RL approaches rely
on fixed rewards for training, limiting the generalizability of the
learnt policies to new tasks.
Zero-shot RL [6, 7, 8] seeks to address this limitation by learning
optimal policies for all possible reward functions. In this way, an
agent may, with a minimal amount of extra computation, infer
an optimal policy for any reward function given at test time.
One of the most classic instantiations of zero-shot RL is goal-
conditioned methods [9, 10], which train goal-conditioned policies to reach any goal state from any other
state. However, these methods are restricted to goal-reaching tasks only.
Recent work has introduced forward-backward (FB) representations [8], which aims to factorize the occupancy
distribution of the policies into a forward representation (F ) of the current state and backward representation
(B) of a target state. One of the limitations of such methods is the reliance on datasets with good coverage.
This problem has been tackled by using exploration policies trained with an intrinsic exploration reward [11,
12, 13, 14]. More recently, Urṕı et al. [15] proposed an exploration strategy for efficiently learning the
representations online by minimizing the epistemic uncertainty on the learned representations. Additionally,
Tirinzoni et al. [16] biased the exploration towards relevant states by regularizing unsupervised RL towards
imitating trajectories from an unlabeled behavior dataset.
Nonetheless, none of these techniques have yet been leveraged to real robotic systems. This project aims
to implement FB method and evaluate its performance on the quadruped robot, Unitree Go2 (see fig. 1).
Excitingly, at test time, the learned model can be prompted to solve entirely new tasks—such as walking
with a specific gait, tracking a desired motion, reaching a target pose, or even performing a backflip without
requiring any additional learning or fine-tuning. This highlights the promise of zero-shot RL in enabling highly
flexible and adaptable robotic behavior, making it an exciting and impactful area for further exploration.

Goal

The objective of this project is to implement the FB method on a real quadruped robot, benchmark it
against other zero-shot RL algorithms, and analyze the advantages and limitations of FB in real-world
robotic scenarios.
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Requirements

The student brings along the following attributes:
1. Proficiency in Python and machine learning (familiar with PyTorch).
2. Good knowledge of reinforcement learning.
3. Experience with hardware is preferred but not essential.
4. Motivation for the project

Interested?

We look forward to working with motivated students who are passionate about reinforcement learning and
robotics. Reach out to Núria Armengol (nuria.armengolurpi@inf.ethz.ch) and Jin Cheng (jin.cheng@inf.ethz.ch)
with your CV and transcripts.
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